

2015 Marking Scheme

Grade	Mark R	equired	° condidatos achievina anada
Awarded	(/ ₁₂₀)	%	% candidates achieving grade
A	82	68.3%	22.0%
В	68	56.7%	24.9%
С	54	45.0%	26.7%
D	47	39.2%	10.5%
No award	< 47	<39.2%	15.9%

Section:	Multiple Choice		Extended A	Answer	Assignment	
Average Mark:	13.7	/20	40.5	/80	12.1	/20

20)15 (CfE	Higher Chemistry Marking Scheme
MC Qu	Answer	% Pupils Correct	Reasoning
1	D	84	 A Neon is a noble gas with a full outer shell and does not need to form ions. B Neon is a noble gas and is monatomic not diatomic. C Neon is a noble gas and does not need to form bonds to get a full outer shell. N Nitrogen, oxygen, fluorine and neon are all gases at room temperature.
2	С	89 oldH=85	 A First ionisation energy forms positive ions not negative ions B First ionisation energy removes one electron from a gaseous neutral atom C One mole of electrons is removed from one mole of atoms in the gaseous state D First ionisation removes one electron from gaseous single atoms
3	D	74	 ☑A Electronegativity of C = 2.5 ☑B Electronegativity of N = 3.0 ∴ most attraction for bonding electrons ☑C Electronegativity of P = 2.2 ☑D Electronegativity of Si = 1.9 ∴ least attraction for bonding electrons
4	A	94	☑A Covalent bonding is found inside molecules not between molecules ☑B Hydrogen bonding is an intermolecular force between molecules ☑C London dispersion forces are intermolecular forces between molecules ☑D permanent dipole - permanent dipole attractions are forces between molecules
5	С	80	 ☑ A Br₂ is non-polar as both atoms in molecule have same electronegativity ☑ B CO₂ is non-polar due to the spacial arrangement of atoms in the molecule ☑ C NH₃ is polar due to the large electronegativity difference of the N-H bond ☑ D CH₄ is non-polar due to the similar electronegativities within the C-H bond
6	В	63	 ☑ A oils are reduced when hydrogen adds across the C=C double bond in an oil ☑ B the oxidation of the C=C double bonds in an oil results in rancidity ☑ C hydrolysis of an oil would produce three fatty acids and glycerol ☑ D oils are already unsaturated due to the presence of C=C double bonds
7	A	29	 A propanol does not react with NaOH but sodium propanoate would form in the neutralisation reaction between alkali (NaOH) and acid (ethanoic acid) B all ethanoic acid would react with NaOH to form a salt plus water C no propylethanoate would be formed as H⁺ ions are required to form esters D ester theoretically formed would be propylethanoate not ethylpropanoate
8	В	50	Oil with lowest melting point will have the highest number of C=C double bonds \therefore highest number of C=C double bonds would react with the most iodine \therefore highest iodine number
9	В	79	 A Glycerol formed has three -OH hydroxyl bonds but no -COOH carboxyl groups B Glycerol formed has three -OH groups on a different carbon each C different fatty acids produced by hydrolysis of oils, not just C₁₇H₃₅COOH D different fatty acids produced by hydrolysis of oils, not just C₁₇H₃₃COOH
10	A	58	 ☑A oxidation: increase in oxygen : hydrogen ratio in molecule ☑B reduction: decrease in oxygen : hydrogen ratio in molecule ☑C hydrolysis: molecules splitting into smaller molecules with H₂O added at break ☑D condensation: small molecules joining to form larger molecule with H₂O removed
11	D	68	 A secondary alcohols oxidise to ketones, tertiary alcohols do no oxidise B -CHO group is found in aldehydes not ketones C carboxyl -COOH groups are found in carboxylic acids not ketones b ketones will not oxidise by oxidising agents e.g. Fehling's solution
12	D	48	 ▲ Carvone contains C=C double bonds ∴ Carvone decolourises bromine solution ▲ B Carvone contains C=C double bonds ∴ Carvone decolourises bromine solution ▲ C Carvone has ketone group ∴ does not oxidised with acidified dichromate solution ▲ Carvone decolourises bromine solution and is oxidised by acidified dichromate

Г

13	В	83	New Section II in the section and the section					
14	С	74	The -OH bond in erthyromycin can be reacted with a carboxylic acid to form an ester by a condensation reaction.					
15	В	69	,2-dimethylpentan-1-ol has the molecular formula C7H15OH IA CH3CH2CH2CH(CH3)CH2OH has the molecular formula of C6H13OH IB (CH3)3CCH(CH3)CH2OH has the molecular formula of C7H15OH ∴ isomer IC CH3CH2CH2CH2CH2CH2CH2CH2OH has the molecular formula of C8H17OH ID (CH3)2CHC(CH3)2CH2CH2OH has the molecular formula of C8H17OH					
16	A	58 oldH=64	$\Delta H_{1} = \Delta H_{2} + \Delta H_{3} + \Delta H_{4}$ $\Delta H_{4} = \Delta H_{1} - \Delta H_{2} - \Delta H_{3}$ $\Delta H_{4} = -210 - (-50) - (-86)$ $\Delta H_{4} = -74kJ \text{ mol}^{-1}$ But ΔH for Z to Y = +74kJ mol^{-1} $X \xrightarrow{\Delta H_{3} = -86kJ \text{ mol}^{-1}} Y$					
17	D	67 oldH=70	$ \begin{array}{c} \blacksquare A \ 2I_{(g)} + 2e^{-} \longrightarrow 2I^{-}_{(g)} \text{ should have } \Delta H = 2x - 349 \text{kJ} = -698 \text{kJ} \\ \blacksquare B \ 2I_{(g)} + 2e^{-} \longrightarrow 2I^{-}_{(g)} \text{ should have } \Delta H = 2x - 349 \text{kJ} = -698 \text{kJ} \\ \blacksquare C \ I_{2(g)} \longrightarrow 2I_{(g)} \text{ should have } \Delta H = +243 \text{kJ} \\ \blacksquare D \ all \ steps \ have \ the \ correct \ enthalpy \ changes: \\ \ Enthalpy \ of \ sublimation \ I_{2(s)} \longrightarrow I_{2(g)} \ \Delta H = +60 \text{kJ} \\ \ Bond \ dissociation \ of \ I_{2} \ I_{2(g)} \ 2I_{(g)} \ \Delta H = +243 \text{kJ} \\ \ 2xelectron \ affinity \ of \ iodine \ 2I_{(g)} + 2e^{-} \longrightarrow 2I^{-}_{(g)} \ \Delta H = -698 \text{kJ} \\ \end{array} $					
18	A	89 oldH=87	Image: State of the state of the forward and reverse reaction Image: State of the state of the forward and reverse reactions are rarely equal Image: State of the state of the forward and reverse reactions are rarely equal Image: State of the state of the forward and reverse reactions are rarely equal Image: State of the state of the state of the forward and reverse reactions are rarely equal Image: State of the					
19	A	67 oldH=74	\square X-Y is energy difference between the reactants (R) and the activated complex \blacksquare B Y-X would give a negative value but activation energy (E _a) must be positive \blacksquare C Y-Z is the enthalpy change (\triangle H) of the reverse reaction \blacksquare D Z-Y is the enthalpy change (\triangle H) of the forward reaction					

			Necessary equations in the same order of						
			inecessary equations in the same order as	s the electrochemical series in data dookiet					
			$SU_4^- + 2H^+ + 2e$						
			$U_2 + 2H_2U + 4e$ $T_1 + 2e^{-1}$						
			$Fe^{3+} + e^{-}$	\rightarrow Fe^{2+}					
			Br ₂ + 2e ⁻	→ 2Br ⁻					
			$MnO_4^- + 8H^+ + 5e^-$	\longrightarrow Mn ²⁺ + 4H ₂ O					
			\blacksquare A OH ⁻ would react with both Br ₂ or I ₂	as OH ⁻ is above both on ECS					
			$O_2 + 2H_2O + 4e^- \longrightarrow 4OH^-$	$O_2 + 2H_2O + 4e^- \longrightarrow 4OH^-$					
			Br₂ + 2e ⁻ → 2Br ⁻	I₂ + 2e ⁻ → 2I ⁻					
			upper reaction reverses	upper reaction reverses					
			$40H^{-} \longrightarrow O_2 + 2H_2O + 4e^{-}$	$40H^{-} \longrightarrow O_2 + 2H_2O + 4e^{-}$					
			Br ₂ + 2e ⁻ → 2Br ⁻	$I_2 + 2e^- \longrightarrow 2I^-$					
			add together and cancel electrons	add together and cancel electrons					
			$Br_2 + 4OH^- \longrightarrow 2Br^- + O_2 + 2H_2O$	$I_2 + 4OH^- \longrightarrow 2I^- + O_2 + 2H_2O$					
			⊠B SO3 ²⁻ would react with both Br₂ or I	$_2$ as SO ₃ ²⁻ is above both on ECS					
			SO4 ²⁻ + 2H ⁺ + 2e ⁻ → SO3 ²⁻ + H2O	$SO_4^{2-} + 2H^* + 2e^- \longrightarrow SO_3^{2-} + H_2O$					
			$Br_2 + 2e^- \longrightarrow 2Br^-$	$I_2 + 2e^- \longrightarrow 2I^-$					
			upper reaction reverses	upper reaction reverses					
	С	38	$SO_3^{2^-} + H_2O \longrightarrow SO_4^{2^-} + 2H^+ + 2e^-$	$SO_3^{2-} + H_2O \longrightarrow SO_4^{2-} + 2H^* + 2e^-$					
22			$Br_2 + 2e^- \longrightarrow 2Br^-$	$I_2 + 2e^- \longrightarrow 2I^-$					
20			add together and cancel electrons	add together and cancel electrons					
			$Br_2 + SO_3^{2^-} + H_2O \longrightarrow 2Br^- + SO_4^{2^-} + 2H^+$	$I_2 + SO_3^{2-} + H_2O \longrightarrow 2I^- + SO_4^{2-} + 2H^+$					
			$\ensuremath{\mathbb{D}}$ C Fe ²⁺ is above Br ₂ so would react with Br ₂ but Fe ²⁺ is below I ₂ so no reaction						
			$Fe^{3+} + e^{-} \longrightarrow Fe^{2+}$	$I_2 + 2e^- \longrightarrow 2I^-$					
			Br₂ + 2e ⁻ → 2Br ⁻	$Fe^{3*} + e^{-} \longrightarrow Fe^{2*}$					
			upper reaction reverses	upper reaction reverses					
			Fe^{2+} \longrightarrow $Fe^{3+} + e^{-}$	2I ⁻ → I ₂ + 2e ⁻					
			$Br_2 + 2e^- \longrightarrow 2Br^-$	$Fe^{3+} + e^{-} \longrightarrow Fe^{2+}$					
			Multiple to equalise electrons, add together & cancel electrons	Multiple to equalise electrons, add together & cancel electrons					
			$Pr_{2} + 2Fe^{2+} \longrightarrow 2Pr^{-} + 2Fe^{3+}$	$2T^{-} + 2Ee^{3+} \longrightarrow T_{a} + 2Ee^{2+}$					
				(This reaction is not the reaction of I_2 with Ee^{2+})					
			Nn ²⁺ would not paget with either Pn	r_{1} on T_{2} or Mn^{2+} is below them on ECS					
			$Pn + 2n^2 \longrightarrow 2Pn^2$	$T_1 \pm 2a^2$ \rightarrow 2T					
				$12 + 2e \longrightarrow 21$					
			$MnO_4 + 8H + 5e \longrightarrow Mn^- + 4H_2O$	$MnO_4 + 8H + 5e \longrightarrow Mn^2 + 4H_2O$					
			upper reaction reverses	upper reaction reverses					
			$2RL \longrightarrow RL^{5} + 7G$	$21 \longrightarrow 1_2 + 2e$					
			$MnO_4^- + 8H^+ + 5e^- \longrightarrow Mn^{2+} + 4H_2O$	$MnO_4^- + 8H^+ + 5e^- \longrightarrow Mn^{2+} + 4H_2O$					
			add together and cancel electrons	add together and cancel electrons					
			$2MnO_4^- + 16H^+ + 10Br^- \longrightarrow Br_2 + Mn^{2+} + 8H_2O$	$2MnO_4^{-} + 16H^{+} + 10I^{-} \longrightarrow I_2 + Mn^{2+} + 8H_2O$					
			(This reaction is not the reaction of ${\rm Br}_2$ with ${\rm Mn}^{2*}$)	(This reaction is not the reaction of I_2 with Mn^{2*})					

2015 CfE Higher Chemistry Marking Scheme								
Long Qu	Answer	Reasoning						
1a	London dispersion forces covalent bonds	The covalent bonds inside the S ₈ rings do not break as the sulphur melts. When sulphur S ₈ melts, London dispersion forces between the S ₈ rings must be overcome but as these are weak then sulphur has a lower melting point. Silicon dioxide is a covalent network. Covalent bonds must be broken before a covalent network will melt into a liguid resulting in a high melting point.						
1b(i)	S / S / S / P - P P	 Any structure for P₄S₃ that obeys the following valency rules: 3 bonds per P atoms 2 bonds per S atom 						
1b(ii)	Increased nuclear attraction/charge or more protons in sulphur nucleus	Sulphur and phosphorus are in the same period of the periodic table and the same shell is being filled with electrons. Sulphur has 16 protons which pull in the outer shell of the sulphur atom further than the 15 protons in a phosphorus nucleus would do. Electrons closer to the nucleus are harder to remove.						
1b(iii)	Answer to include:	1 st Mark: Forces are stronger between sulphur than between phosphorus 2 nd Mark: London dispersion forces are the forces between the molecules. 3 rd Mark: Forces are stronger between Sulphur molecules of 8 atoms than between phosphorus molecules of 4 atoms.						
2a	45-46	From graph: rate = 0.0022 s ⁻¹ Rate = $\frac{1}{\text{time}}$ \therefore time = $\frac{1}{\text{rate}}$ = $\frac{1}{0.022}$ = 45s						
2b(i)	Curve and peak drawn to left of original curve	No of particles kinetic energy						
2b(ii)	Line drawn to the left of the Ea line.	Solution of the second						
3a (i)	Diagram showing:	1mark: workable apparatus for passing the steam through the strawberry gum (steam must pass through the strawberry gum leaves not just pass over) 1mark: workable apparatus for condensing the steam and essential oil						
3a(ii)	(fractional) distillation or chromatography	Distillation separates chemicals with different boiling points. Chromatography separates chemicals due to difference in polarity or size.						

		gfm cinnamic acid = 1	48g		gfm methanol =	32g			
2 6 (1)		no. of mol =	= 6.5g	- = 0.0439mol	n o. of mol = <u></u>	$\frac{nass}{c} = \frac{2.0g}{22} = 0.0625$	ōmol		
		gfm	148g			gtm 32g			
	Anguan ta includa:	cinnamic	cinnamic acia + methanoi — F methyl cinnamate + wat						
3D(i)	Answer to include.	1mol 0.0439i	1mol 1mol 1mol 1mol 1mol						
		(+0.0186mol leftover)							
		Cinnamic acid is t	Cinnamic acid is the limiting reactant as all 0.0439mol of cinnamic acid is						
		used up in the reaction. 0.0186mol methanol is left over in the reaction.							
		Cinnamic	acid + m	ethanol —	─► methyl c	innamate + water			
		1mol			1r	nol			
26		1489	1		16	o2g			
3D (ii)	52%	6.5g			16	6.5/ ₁₄₈			
Part A					= 7	7.1g (theoretical)			
		9/	ald -	actual	3.7	v 100 - 52%			
		/o y	eia =	heoretical	7.1	-X 100 - 52 %			
		Cinnamic	acid + m	ethanol —	→ methyl c	:innamate + water			
		6.5g			, 3.	.7g (at 52% yield)			
3b(ii)	C 24 E 0	6.5g	x ¹⁰⁰ / _{3.7}		10)0g			
Part R	524.09	=175.7	′g						
rarrb		2500	j cinnam	ic acid	costs £35.	00			
		175.7	j cinnam	ic acid	costs £35.	$.00 \times \frac{175.7}{250} = £24$.59		
10	Citronellol or geraniol	Only peaks B (cit	ronellol)	, C (geranic	ol) and E (anisy	l alcohol) appear on o	all		
τu	or anisyl alcohol	three chromatog	hree chromatograms						
	Counterfeit perfumes have	The area under each peak is proportional to the quantity of that chemical in the							
4b lower concentrations o		sample. The smaller the peak, the lower the concentration of that chemical.							
	compounds	Gas chromatography needs a carrier gas to flow through the separating column. The sample							
4c(i)	Inert/does not react	compounds pass through the column at different rates dependent on their attraction to the							
	with molecules	mobile phase (the helium gas) or the stationary phase (the contents of the column)							
1	Size of molecules or	The smaller molecules will pass through the column more quickly than larger							
4 C(ii)	temperature of column	molecules. Increasing the temperature in the column would increase the kinetic leneral of the particles and they would pass through the column more quickly							
		Terpenes are formed wh							
4d (i)	lerpenes			hen multiple units of isoprene join together.					
		3 7-dimethylocta-1 6-dien-3-ol							
4d(ii)	3 7-dimethylocta-1 6-dien-3-ol								
Part A		-CH3 groups on 8 carbons with -OH group							
		$\begin{array}{c} carbon C_3 \text{ and } C_7 \qquad 2xC=C \text{ on } C_1 \text{ and } C_6 \qquad \text{ on } C_3 \end{array}$							
	3 carbons attached	Alcohol			Description				
4a (ii)	to the Carbon with	Secondary	1 carbon	s directly att	ached to the carbo ached to the carbo	on with the -OH group			
Part B	the -OH group	Tertiary 3 carbons directly attached to the carbon with the -OH group							
		1kg body mass al	owed 0.1	Omg coumari	n				
		75kg body mass al	lowed 0.1	Omg coumar	in x ⁷⁵ /1				
Δο	170		= 7	5mg coumar	in = 0.00	075g coumarin			
TE	1.79	4.4g coumarin	conta	ined in 100	00g cinnamon pov	wder			
		0.0075g coumarin	conto	ined in 100	DOg cinnamon poi	wder x ^{0.0075} /4.4			
				= 1.	/ Ug cinnamon po	waer			
		3 mark ans	Ner	2 mar	rk answer	1 mark answer	1		
	Oner Out	understanding of the ch	emistry	understanding	of the chemistry	understanding of the chemist	try		
5	Open Question	involved. A good compre the chemistry has provi	nension of ded in a	involved, makin statement(s) w	ng some Nhich are relevant to	involved. The candidate has n some statement(s) which are	nade		
	Answer to Include:	logically correct, includi	ng a	the situation, s	showing that the	relevant to the situation, sho	wing		
		statement of the princip involved and the applica	nes tion of	problem is und	erstood.	tnat at least a little of the chemistry within the problem	ı is		
	1	these to respond to the	problem			understood			

6a	Heat breaks hydrogen bonds	Globular proteins have a very specific shape and hydrogen bonding is important in holding these proteins chains together. Hydrogen bonds break on heating, the shape of the protein unravels and won't return to the original shape when the temperature decreases again.					
6b(i)	One structure from:	CH2 I HC CH HC CH HC CH HC CH HC CH CH CH3 These side groups are non-polar and predominantly hydrocarbon. Hydrocarbons are hydrophobic in nature. The other side groups shown are hydrophilic as they have polar groups e.gNH2, -OH and -COOH					
6b(ii)	$50.5\pm1^{\circ}C$	Highest Fluorescence = 2600 units Lowest Fluorescence = 875 units temperature at 1737.5 units = 50.5°C					
6 C(i)	Hydrolysis	When protein is broken down into amino acids in the body by digestive enzymes, the process breaks the protein into amino acids adding a water molecule across the break point each time. This is a hydrolysis reaction.					
6c(ii) Part A	5	Amino acids are monomers with an $-NH_2$ group and a $-COOH$ group. All amino acids have this structure with only the side group R changing from amino acid to amino acid. H H O -N-C-C-O- When amino acids join together by a condensation reaction and a water molecule is removed between amino acids and the repeating unit is. There are five of these units in the diagram in the question R					
6c(ii) Part B	One amino acid structure from:	$\begin{array}{ccccccc} H & H & O & H & H & O & H & H & O \\ H & H & O & H & H & O & H & H & O \\ H & H & H & O & H & H & O & H & H & O \\ C & C & H & H & H & O & C & C & -O & H \\ H & H & C & C & C & C & C & C & H & C & H_2 & C & $					
7a	88.5 litres	$\frac{1 \text{mol } CH_{3}OH = (1 \times 12) + (4 \times 1) + (1 \times 16) = 12 + 4 + 16 = 32g}{\text{no. of mol} = \frac{\text{mass}}{\text{gfm}}} = \frac{118g}{32g \text{ mol}^{-1}} = 3.69 \text{mol}$ $\frac{2CH_{3}OH + 3O_{2}}{2 \text{mol}} \rightarrow \frac{2CO_{2} + 4H_{2}O}{2 \text{mol}}$ $\frac{2 \text{mol}}{3.69 \text{mol}} = \frac{3.69 \text{mol}}{3.69 \text{mol}}$ $\frac{2 \text{Volume} = \text{no. of mol} \times \text{Molar Volume} = 3.69 \text{mol} \times 24 \text{ litres mol}^{-1} = 88.5 \text{ litres}}$					
7b(i) Part A	One answer from:	Thermometer touching bottom of beaker Thermometer is directly above flame Temperature rise recorded would be greater than expected					
7b(i) Part B	One answer from:	Distance between Height of Same Beaker made of same flame and beaker wick in burner draught proofing material e.g. copper					

71		$E_{h} = c$ $E_{h} = 4.18$ $E_{h} = 9.614$	X X kJ	m x 0.1 x		ΔT 23			
/ D(i)	-288 kJ mol ⁻¹	1mol CH3OH = (1x1	2)+(4x1)+	(1x16) = 1	12+4+16	= 32g			
Part C			1.07g	\leftrightarrow	•	9.614kJ	32 /		
			32g	\leftrightarrow	•	9.614KJ	X ³² / _{1.07}	7	
				m = 14		-287.92 K	J moi -		
7b(ii)	0.799		density = <u>mass</u> = <u>19.98g</u> = 0.799g volume = <u>25.0cm³</u> = 0.799g				99g cm ⁻³		
7 c(i)	Heat produced by exothermic reactions will need to be removed	rise in temperature. Endothermic reactions must have heat energy continually suppl system for the chemical reaction to take place. The design of the reaction chamber take account of the supply or removal of heat energy.					ystem will continually nually supplied to on chamber must		
		Bond B	reaking Step	S		В	ond Formir	ng Steps	
		3xC-H bonds 1xC-O bond	3x +412kJ = 1x +360kJ =	1236kJ 360kJ	3x 2x	3xH-H bonds $3x - 436kJ = 1308kJ2xC=0$ bonds $2x - 743kT = 1486kT$			
		3x O-H bonds	3x +463kJ =	1389kJ	-^^	e e ponde			
7c (ii)	+191 kJ mol ⁻¹	Total	: C l l	: +2985kJ		tal	11. T	= 2794 kJ -1	
		ΔΗ - ΣBond	Enthalpies	cnange =	+2985 · s broken	- 2/94 = +19 - 5Bond	/IKJ MOI enthalnies	- s for bonds formed	
		$\Delta H = 200$	2	985	Droken	-	2	794	
		ΔH =	+191	'J mol⁻¹					
			1 st N	lark:			calcium co	arbonate	
				a	mmonia				
	Flow chart complete with:				6	carbon dioxide		calcium oxide	
8a		2 m d AA and u	SOC	lium	1		ammo	nium	
		2nd Mark:	hydrogen	carbonate			chlor	ide	
					w	ater			
			sodium a	arbonate					
	Adding Na ⁺ shifts	Brine contains Nat io	ns. Na⁺ ion:	s are a rec	actant in	the reaction.	When a r	reactant is added to a	
8b	aquilibrium to nicht	reaction at equilibriu	m, the equ	ilibrium sh	nifts to t	he right to m	ake addit	ional products and	
	equilibrium to right	III remove the additional Na ⁺ ions.							
9	Open Question Answer to Include:	3 mark answer 2 mark answer Demonstrates a good understanding of the chemistry involved. A good comprehension of the chemistry has provided in a logically correct, including a statement of the principles involved and the application of these to reserved to the problem Demonstrates a reasonable understanding of the chemistry involved, making some statement(s) which are relevant to the situation, showing that the problem is understood.		nswer nable chemistry statement(s) che situation, em is	Demonstra understand involved. T some state to the situ a little of problem is	tes a <u>limited</u> tes a <u>limited</u> ding of the chemistry he candidate has made iment(s) which are relevant ation, showing that at least the chemistry within the understood.			
	24 hours allows time for all	The reactants need the	me to react	so leaving	them ove	er night for 24	hours all	ows more than	
10a(i)	Zinc to react No stopper allows gas to	sufficient time for every particle of reactants to react and becc If a stopper were to prevent the hydrogen gas from escaping the				escaping then	the press	ure would build up and	
	escape from flask	the flask could explod	e.						
10a(ii)	One answer from:	zinc ions impurities metal ions salts					_		
10h(i)	Pinette	Measuring cylinders and beakers do not measure volumes accurately enough to prepare						ugh to prepare	
100(1)		standard solutions. A	entration	in a l ⁻¹) = (urate at 0.010 litra	measuring exists a location of the second seco	act volum 1a = 10m	es of liquid.	
10b(ii)	10	concentration = $\frac{\text{mass}}{\text{volume}}$ = $\frac{10\text{mg}}{1\text{litre}}$ = 10mg l ⁻¹				2			
10-	14 4 0	A line of best fit sho	uld be dra	wn on the	graph wh	nich ignores t	he obviou	s rogue result.	
100	4.0-4.8	When the absorbanc is obtained (not 4.0 v	e at 0.3 is vhich would	extrapola [.] 1 be obtail	ted from ned using	the drawn lin the rogue po	int)	entration of 4.6-4.8	
11a	Carboxyl or carboxylic acid	-O-H		— O	H	O - C -	- H	O C—C—C ketone group	

11b	Esterification or condensation	Carboxylic acids react with alcohols to make esters by a condensation reaction with water removed as they join. Condensation reactions which form esters are also known as esterification reactions.						
11c	Diagram showing:	$H - O - \left(\begin{array}{c} O & H & H \\ \parallel & \mid & \mid \\ -C - O - C - C - H \\ \parallel & H \\ H & H \end{array} \right)$						
11d	As molecular size increases, adsorption decreases	roblem Solving: drawing a conclusion from a table of results						
12a(i)	Answer to include:	1st mark: rinse the burette with (thiosulphate) solution. 2nd and 3 rd marks for two of the following points: Fill burette above the scale with to be solution drained to thiosulphate solution run into the sol						
12a(ii)	$2I^- \rightarrow I_2 + 2e^-$	Redox equation:NaOCI+ $2I^-$ + $2H^+$ \rightarrow I_2 +NaCI+ H_2O Oxidation step: $2I^ \rightarrow$ I_2 + $2e^-$ Reduction step:NaOCI+ $2H^+$ + $2e^-$ NaCI+ H_2O						
12a(iii)	6.20x10 ⁻⁵ mol l ⁻¹	$\begin{split} & S_2 O_3^{2^-} \text{ no. of mol} = \text{concentration} \times \text{volume} = 0.00100_{\text{litres}} \times 0.0124 \text{ mol} \text{ l}^{-1} = 1.24 \times 10^{-5} \text{ mol} \\ & I_2 + 2Na_2S_2O_3 \longrightarrow 2NaI + Na_2S_4O_6 \\ & 1\text{mol} & 2\text{mol} \\ & 6.20 \times 10^{-6}\text{mol} & 1.24 \times 10^{-5}\text{mol} \\ & NaOCI + 2I^- + 2H^+ \longrightarrow I_2 + NaCI + H_2O \\ & 1\text{mol} & 1\text{mol} \\ & 6.20 \times 10^{-6}\text{mol} & 6.20 \times 10^{-6}\text{mol} \\ & 100\text{cm}^3 \text{ of swimming pool water} & \text{contains } 6.20 \times 10^{-6} \text{ mol} \times 1000/_{100} \\ \end{split}$						
12b	44.4 litres	45 000 litres of swimming pool water requires 400cm ³ hypochlorite to raise by 1ppm 45 000 litres of swimming pool water requires 800cm ³ hypochlorite to raise by 2ppm 2500000 litres of pool water requires 800cm ³ x ²⁵⁰⁰⁰⁰⁰ / ₄₅₀₀₀ = 44444cm ³ -44 4 litres						
12c(i)	Answer to include:	1 st mark: ammonia is polar and trichloramine is non-polar 2 nd mark: electronegativity difference is bigger in N-H bond than N-Cl bond ∴ NH₃ is polar and NCl is non-polar						
12c(ii)	Substance with unpaired electron	Free radicals are very reactive particles which have an unpaired electron. The free radical will react with a large variety of substances to achieve the pairing of the unpaired electron.						
12a(iii)	propagation	Step Reactants (before Arrow) Products (after Arrow) Initiation No free radicals on Left Hand Side Free radicals on Right Hand Side Propagation Free Radicals found on both sides of arrow Termination Free radicals on Left Hand Side No free radicals on Right Hand Side						
13a	— С — Н О	Aldehyde groups contain a carbonyl (C=O) group with a hydrogen atom attached. The carbon in the aldehyde group is always carbon number one in any numbering system assigned to an aldehyde when naming the compound.						
13b	$H = H = CH_2OH$ $HO = C = C$ $HO = CH_2OH$ $HO = CH_2OH$ $H = CH_2OH$ $H = CH_2OH$	Problem Solving Question						